Worldwide greenhouse gas emissions of green hydrogen production and transport (2024)

References

  1. Global Hydrogen Review 2022. International Energy Agency https://doi.org/10.1787/39351842-en (2022).

  2. Global Hydrogen Trade to Meet the 1.5 °C Climate Goal: Part IITechnology Review of Hydrogen Carriers (International Renewable Energy Agency, 2022).

  3. Inflation Reduction Act of 2022, H.R.5376, 117th Cong. (US House of Representatives, 2022).

  4. Net Zero Ambition Progress Update (BP, 2023).

  5. Proposal for a Regulation of the European Parliament and of the Council on Establishing a Framework of Measures for Strengthening Europe’s Net-Zero Technology Products Manufacturing Ecosystem (Net Zero Industry Act). COM(2023) 161 Final (European Commission, 2023).

  6. G20 Energy Transitions Ministers. G20 Energy Transitions Ministers’ Meeting Outcome Document and Chair’s Summary, 22 July 2023, Goa, India (The Government of India, 2023).

  7. Babiker, M. et al. Cross-sectoral perspectives. In Climate Change 2022: Mitigation of Climate change. Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) Ch. 12 (Cambridge Univ. Press, 2022).

  8. Geopolitics of the Energy Transformation: The Hydrogen Factor (International Renewable Energy Agency, 2022).

  9. Van de Graaf, T., Overland, I., Scholten, D. & Westphal, K. The new oil? The geopolitics and international governance of hydrogen. Energy Res. Soc. Sci. 70, 101667 (2020).

    Article Google Scholar

  10. Towards Hydrogen Definitions Based on Their Emissions Intensity (International Energy Agency, 2023).

  11. Bareiß, K., de la Rua, C., Möckl, M. & Hamacher, T. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems. Appl. Energy 237, 862–872 (2019).

    Article Google Scholar

  12. Mac Dowell, N. et al. The hydrogen economy: a pragmatic path forward. Joule 5, 2524–2529 (2021).

    Article Google Scholar

  13. Gerloff, N. Comparative life-cycle-assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production. J. Energy Storage 43, 102759 (2021).

    Article Google Scholar

  14. Terlouw, T., Bauer, C., McKenna, R. & Mazzotti, M. Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment. Energy Environ. Sci. 15, 3583–3602 (2022).

    Article Google Scholar

  15. Tsiklios, C., Hermesmann, M. & Müller, T. E. Hydrogen transport in large-scale transmission pipeline networks: Thermodynamic and environmental assessment of repurposed and new pipeline configurations. Appl. Energy 327, 120097 (2022).

    Article Google Scholar

  16. Al-Breiki, M. & Bicer, Y. Investigating the technical feasibility of various energy carriers for alternative and sustainable overseas energy transport scenarios. Energy Convers. Manag. 209, 112652 (2020).

    Article Google Scholar

  17. Vilbergsson, K. V. et al. Can remote green hydrogen production play a key role in decarbonizing Europe in the future? A cradle-to-gate LCA of hydrogen production in Austria, Belgium, and Iceland. Int. J. Hydrogen Energy https://doi.org/10.1016/j.ijhydene.2023.01.081 (2023).

  18. Ishimoto, Y. et al. Large-scale production and transport of hydrogen from Norway to Europe and Japan: value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers. Int. J. Hydrog. Energy 45, 32865–32883 (2020).

    Article Google Scholar

  19. Velazquez Abad, A. & Dodds, P. E. Green hydrogen characterisation initiatives: definitions, standards, guarantees of origin, and challenges. Energy Policy 138, 111300 (2020).

    Article Google Scholar

  20. Lebrouhi, B. E., Djoupo, J. J., Lamrani, B., Benabdelaziz, K. & Kousksou, T. Global hydrogen development—a technological and geopolitical overview. Int. J. Hydrog. Energy 47, 7016–7048 (2022).

    Article Google Scholar

  21. Odenweller, A., Ueckerdt, F., Nemet, G. F., Jensterle, M. & Luderer, G. Probabilistic feasibility space of scaling up green hydrogen supply. Nat. Energy 7, 854–865 (2022).

    Article Google Scholar

  22. Hydrogen Projects Database. International Energy Agency https://www.iea.org/data-and-statistics/data-product/hydrogen-projects-database (2022).

  23. Bosmans, J. H. C. C., Dammeier, L. C. & Huijbregts, M. A. J. J. Greenhouse gas footprints of utility-scale photovoltaic facilities at the global scale. Environ. Res. Lett. 16, 094056 (2021).

    Article Google Scholar

  24. Dammeier, L. C., Bosmans, J. H. C. & Huijbregts, M. A. J. Variability in greenhouse gas footprints of the global wind farm fleet. J. Ind. Ecol. 27, 272–282 (2023).

    Article Google Scholar

  25. Kadiyala, A., Kommalapati, R. & Huque, Z. Evaluation of the life cycle greenhouse gas emissions from hydroelectricity generation systems. Sustainability 8, 1–14 (2016).

    Google Scholar

  26. Knobloch, F. et al. Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nat. Sustain. 3, 437–447 (2020).

    Article Google Scholar

  27. Hofste, R. et al. Aqueduct 3.0: updated decision-relevant global water risk indicators. World Resources Institute https://doi.org/10.46830/writn.18.00146. (2019)

  28. Palmer, G., Roberts, A., Hoadley, A., Dargaville, R. & Honnery, D. Life-cycle greenhouse gas emissions and net energy assessment of large-scale hydrogen production via electrolysis and solar PV. Energy Environ. Sci. 14, 5113–5131 (2021).

    Article Google Scholar

  29. Kolb, S., Müller, J., Luna-Jaspe, N. & Karl, J. Renewable hydrogen imports for the German energy transition—a comparative life cycle assessment. J. Clean. Prod. 373, 133289 (2022).

  30. Schill, W. P. Residual load, renewable surplus generation and storage requirements in Germany. Energy Policy 73, 65–79 (2014).

    Article Google Scholar

  31. Daggash, H. A. et al. Closing the carbon cycle to maximise climate change mitigation: power-to-methanol vs. power-to-direct air capture. Sustain. Energy Fuels 2, 1153–1169 (2018).

    Article Google Scholar

  32. Sternberg, A. & Bardow, A. Power-to-what?—Environmental assessment of energy storage systems. Energy Environ. Sci. 8, 389–400 (2015).

    Article Google Scholar

  33. Reuß, M., Grube, T., Robinius, M. & Stolten, D. A hydrogen supply chain with spatial resolution: comparative analysis of infrastructure technologies in Germany. Appl. Energy 247, 438–453 (2019).

    Article Google Scholar

  34. Bauer, C. et al. On the climate impacts of blue hydrogen production. Sustain. Energy Fuels 6, 66–75 (2022).

    Article Google Scholar

  35. Tahan, M. R. Recent advances in hydrogen compressors for use in large-scale renewable energy integration. Int. J. Hydrog. Energy 47, 35275–35292 (2022).

    Article Google Scholar

  36. Ocko, I. B. & Hamburg, S. P. Climate consequences of hydrogen emissions. Atmos. Chem. Phys. 22, 9349–9368 (2022).

    Article Google Scholar

  37. Warwick, N. et al. Atmospheric implications of increased hydrogen use. Department of Business, Energy and Industrial Strategy https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1067144/atmospheric-implications-of-increased-hydrogen-use.pdf#:~:text=%60Atmospheric implications of increased hydrogen use An increase,stratospheric %28%3E40 (2022).

  38. Pressure drop in pipelines transporting compressed hydrogen gas. Fraunhofer IFF https://doi.org/10.13140/RG.2.2.17431.96168 (2023).

  39. Wijayanta, A. T., Oda, T., Purnomo, C. W., Kashiwagi, T. & Aziz, M. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: comparison review. Int. J. Hydrog. Energy 44, 15026–15044 (2019).

    Article Google Scholar

  40. Al-Breiki, M. & Bicer, Y. Comparative life cycle assessment of sustainable energy carriers including production, storage, overseas transport and utilization. J. Clean. Prod. 279, 123481 (2021).

    Article Google Scholar

  41. Global Hydrogen Review 2021. International Energy Agency https://doi.org/10.1787/39351842-en (2021).

  42. Tracking Clean Energy Progress 2023. International Energy Agency https://www.iea.org/reports/tracking-clean-energy-progress-2023 (2023).

  43. Forster, P. M. et al. Indicators of Global Climate Change 2022: annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 15, 2295–2327 (2023).

    Article Google Scholar

  44. Rogelj, J. et al. Credibility gap in net-zero climate targets leaves world at high risk. Science 380, 1014–1016 (2023).

    Article Google Scholar

  45. European Commission. Commission Delegated Regulation (EU) 2023/1185 of 10 February 2023 supplementing Directive (EU) 2018/2001 of the European Parliament and of the Council by Establishing a Minimum Threshold for Greenhouse Gas Emissions Savings of Recycled Ccarbon Fuels and by Specifying a Methodology for Assessing Greenhouse Gas Emissions Savings from Renewable Liquid and Gaseous Transport Fuels of Non-Biological Origin and from Recycled Carbon Fuels (2023).

  46. U.S. Department of Energy Clean Hydrogen Production Standard (CHPS) Draft Guidance. US Department of Energy https://www.hydrogen.energy.gov/clean-hydrogen-production-standard.html (2023).

  47. de Kleijne, K., de Coninck, H., van Zelm, R., Huijbregts, M. A. J. & Hanssen, S. V. The many greenhouse gas footprints of green hydrogen. Sustain. Energy Fuels 6, 4383–4387 (2022).

    Article Google Scholar

  48. Dillman, K. & Heinonen, J. Towards a safe hydrogen economy: an absolute climate sustainability assessment of hydrogen production. Climate 11, 1–18 (2023).

    Article Google Scholar

  49. Cheng, W. & Lee, S. How green are the national hydrogen strategies? Sustainability 14, 1–33 (2022).

    Google Scholar

  50. Dillman, K. J. & Heinonen, J. A. ‘Just’ hydrogen economy: a normative energy justice assessment of the hydrogen economy. Renew. Sustain. Energy Rev. 167, 112648 (2022).

    Article Google Scholar

  51. Scita, R., Raimondi, P. P. & Noussan, M. Green hydrogen: the holy grail of decarbonisation? An analysis of the technical and geopolitical implications of the future hydrogen economy. FEEM Working Paper no. 13.2020 (2020).

  52. Vogl, V., Åhman, M. & Nilsson, L. J. Assessment of hydrogen direct reduction for fossil-free steelmaking. J. Clean. Prod. 203, 736–745 (2018).

    Article Google Scholar

  53. Osman, A. I. et al. Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. 20, 153–188 (2022).

    Article Google Scholar

  54. Vartiainen, E. et al. True cost of solar hydrogen. Sol. RRL 6, 2100487 (2022).

    Article Google Scholar

  55. Devlin, A., Kossen, J., Goldie-Jones, H. & Yang, A. Global green hydrogen-based steel opportunities surrounding high quality renewable energy and iron ore deposits. Nat. Commun. 14, 2578 (2023).

    Article Google Scholar

  56. Smolinka, T. et al. Studie IndWEDe: Industrialisierung der Wasserelektrolyse in Deutschland: Chancen und Herausforderungen für nachhaltigen Wasserstoff für Verkehr, Strom und Wärme. Fraunhofer https://www.ipa.fraunhofer.de/de/Publikationen/studien/studie-indWEDe.html (2018).

  57. Mehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S. J. & Ulgiati, S. Life cycle assessment and water footprint of hydrogen production methods: from conventional to emerging technologies. Environments 5, 24 (2018).

  58. Brigljević, B. et al. When bigger is not greener: ensuring the sustainability of power-to-gas hydrogen on a national scale. Environ. Sci. Technol. 56, 12828–12837 (2022).

    Article Google Scholar

  59. Integration of Hydrohub gigawatt electrolysis facilities in five industrial clusters in the Netherlands. Hydrohub https://ispt.eu/media/ISPT-samenvattend-rapport-GigaWatt-online-def.pdf (2020).

  60. Schmidt, T. S. et al. Additional emissions and cost from storing electricity in stationary battery systems. Environ. Sci. Technol. 53, 3379–3390 (2019).

    Article Google Scholar

  61. Bauer, C. et al. Electricity storage and hydrogen—technologies, costs and impacts on climate change. Paul Scherrer Institut https://www.psi.ch/de/media/72878/download?attachment (2022).

  62. Lenzen, M. Life cycle energy and greenhouse gas emissions of nuclear energy: a review. Energy Convers. Manag. 49, 2178–2199 (2008).

    Article Google Scholar

  63. IPCC. Technology-specific cost and performance parameters. In Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report (ed. Intergovernmental Panel on Climate Change) 1329–1356 (Cambridge Univ. Press, 2015).

  64. Pomponi, F. & Hart, J. The greenhouse gas emissions of nuclear energy—life cycle assessment of a European pressurised reactor. Appl. Energy 290, 116743 (2021).

    Article Google Scholar

  65. Davis, N. et al. Global Wind Atlas v3. DTU https://doi.org/10.11583/DTU.9420803.v1 (2019).

  66. Bosmans, J. H. C., Dammeier, L. C. & Huijbregts, M. A. J. Corrigendum: greenhouse gas footprints of utility-scale photovoltaic facilities at the global scale (2021 Environ. Res. Lett. 16 094056). Environ. Res. Lett. 18, 059501 (2023).

    Article Google Scholar

  67. Global photovoltaic power potential by country. ESMAP http://documents.worldbank.org/curated/en/466331592817725242/Global-Photovoltaic-Power-Potential-by-Country (2020).

  68. Documentation: methodology. Solargis https://solargis.com/docs/methodology (2023).

  69. Bosmans, J. et al. Determinants of the distribution of utility-scale photovoltaic power facilities across the globe. Environ. Res. Lett. 17, 114006 (2022).

    Article Google Scholar

  70. Uusitalo, V., Väisänen, S., Inkeri, E. & Soukka, R. Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis. Energy Convers. Manag. 134, 125–134 (2017).

    Article Google Scholar

  71. Koj, J. C., Wulf, C., Linssen, J., Schreiber, A. & Zapp, P. Utilisation of excess electricity in different power-to-transport chains and their environmental assessment. Transp. Res. Part D 64, 23–35 (2018).

    Article Google Scholar

  72. Rumayor, M., Dominguez-Ramos, A. & Irabien, A. Formic acid manufacture: carbon dioxide utilization alternatives. Appl. Sci. 8, 914 (2018).

    Article Google Scholar

  73. Bareschino, P. et al. Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization. Renew. Sustain. Energy Rev. 130, 109962 (2020).

    Article Google Scholar

  74. Sternberg, A. & Bardow, A. Life cycle assessment of power-to-gas: syngas vs methane. ACS Sustain. Chem. Eng. 4, 4156–4165 (2016).

    Article Google Scholar

  75. Meylan, F. D., Piguet, F. P. & Erkman, S. Power-to-gas through CO2 methanation: assessment of the carbon balance regarding EU directives. J. Energy Storage 11, 16–24 (2017).

    Article Google Scholar

  76. Biernacki, P., Röther, T., Paul, W., Werner, P. & Steinigeweg, S. Environmental impact of the excess electricity conversion into methanol. J. Clean. Prod. 191, 87–98 (2018).

    Article Google Scholar

  77. Jens, C. M., Müller, L., Leonhard, K. & Bardow, A. To Integrate or not to integrate—techno-economic and life cycle assessment of CO2 capture and conversion to methyl formate using methanol. ACS Sustain. Chem. Eng. 7, 12270–12280 (2019).

    Google Scholar

  78. d’Amore-Domenech, R., Meca, V. L., Pollet, B. G. & Leo, T. J. On the bulk transport of green hydrogen at sea: comparison between submarine pipeline and compressed and liquefied transport by ship. Energy 267, 126621 (2023).

    Article Google Scholar

  79. Stolzenburg, K. & Mubbala, R. Integrated design for demonstration of efficient liquefaction of hydrogen (IDEALHY). Fuel Cells and Hydrogen Joint Undertaking (FCH JU). IDEALHY https://www.idealhy.eu/uploads/documents/IDEALHY_D3-16_Liquefaction_Report_web.pdf (2013).

  80. Egerer, J., Grimm, V., Niazmand, K. & Runge, P. The economics of global green ammonia trade—‘Shipping Australian wind and sunshine to Germany’. SSRN Electron. J. 334, 120662 (2022).

    Google Scholar

  81. Armijo, J. & Philibert, C. Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and Argentina. Int. J. Hydrog. Energy 45, 1541–1558 (2020).

    Article Google Scholar

  82. McKinlay, C. J., Turnock, S. R. & Hudson, D. A. Route to zero emission shipping: hydrogen, ammonia or methanol? Int. J. Hydrog. Energy 46, 28282–28297 (2021).

    Article Google Scholar

  83. European Commission Commission Delegated Regulation (EU) 2021/2139 of 4 June 2021. Off. J. Eur. Union 442, 1–349 (2021).

    Google Scholar

  84. Wang, M. et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes? Energy Environ. Sci. 14, 2535–2548 (2021).

    Article Google Scholar

  85. de Kleijne, K. et al. Data and code for ‘Worldwide greenhouse gas emissions of green hydrogen production and transport’. Zenodo https://doi.org/10.5281/zenodo.11203454 (2024).

Download references

Worldwide greenhouse gas emissions of green hydrogen production and transport (2024)

References

Top Articles
Latest Posts
Article information

Author: Jerrold Considine

Last Updated:

Views: 6262

Rating: 4.8 / 5 (58 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Jerrold Considine

Birthday: 1993-11-03

Address: Suite 447 3463 Marybelle Circles, New Marlin, AL 20765

Phone: +5816749283868

Job: Sales Executive

Hobby: Air sports, Sand art, Electronics, LARPing, Baseball, Book restoration, Puzzles

Introduction: My name is Jerrold Considine, I am a combative, cheerful, encouraging, happy, enthusiastic, funny, kind person who loves writing and wants to share my knowledge and understanding with you.