Generic protein–ligand interaction scoring by integrating physical prior knowledge and data augmentation modelling (2024)

References

  1. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article Google Scholar

  2. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article Google Scholar

  3. Muller, S. et al. Target 2035—update on the quest for a probe for every protein. RSC Med. Chem. 13, 13–21 (2022).

    Article Google Scholar

  4. Kaplan, A. L. et al. Bespoke library docking for 5-HT(2A) receptor agonists with antidepressant activity. Nature 610, 582–591 (2022).

    Article Google Scholar

  5. Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).

    Article Google Scholar

  6. Shen, C. et al. Beware of the generic machine learning-based scoring functions in structure-based virtual screening. Brief. Bioinform. 22, bbaa070 (2021).

    Article Google Scholar

  7. Guedes, I. A., Pereira, F. S. S. & Dardenne, L. E. Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front. Pharmacol. 9, 411637 (2018).

    Article Google Scholar

  8. Shen, C. et al. Accuracy or novelty: what can we gain from target-specific machine-learning-based scoring functions in virtual screening? Brief. Bioinform. 22, bbaa410 (2021).

    Article Google Scholar

  9. Zhu, H., Yang, J. & Huang, N. Assessment of the generalization abilities of machine-learning scoring functions for structure-based virtual screening. J. Chem. Inf. Model. 62, 5485–5502 (2022).

    Article Google Scholar

  10. Francoeur, P. G. et al. Three-dimensional convolutional neural networks and a cross-docked data set for structure-based drug design. J. Chem. Inf. Model. 60, 4200–4215 (2020).

    Article Google Scholar

  11. Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J. & Koes, D. R. Protein-ligand scoring with convolutional neural networks. J. Chem. Inf. Model. 57, 942–957 (2017).

    Article Google Scholar

  12. Li, S. et al. Structure-aware interactive graph neural networks for the prediction of protein-ligand binding affinity. In Proc. 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (eds Feida, Z. et al.) 975–985 (ACM, 2021); https://doi.org/10.1145/3447548.3467311

  13. Lim, J. et al. Predicting drug-target interaction using a novel graph neural network with 3D structure-embedded graph representation. J. Chem. Inf. Model. 59, 3981–3988 (2019).

    Article Google Scholar

  14. Moon, S., Zhung, W., Yang, S., Lim, J. & Kim, W. Y. PIGNet: a physics-informed deep learning model toward generalized drug-target interaction predictions. Chem. Sci. 13, 3661–3673 (2022).

    Article Google Scholar

  15. Shen, C. et al. Boosting protein-ligand binding pose prediction and virtual screening based on residue-atom distance likelihood potential and graph transformer. J. Med. Chem. 65, 10691–10706 (2022).

    Article Google Scholar

  16. Jiang, D. et al. InteractionGraphNet: a novel and efficient deep graph representation learning framework for accurate protein-ligand interaction predictions. J. Med. Chem. 64, 18209–18232 (2021).

    Article Google Scholar

  17. Méndez-Lucio, O., Ahmad, M., del Rio-Chanona, E. A. & Wegner, J. K. A geometric deep learning approach to predict binding conformations of bioactive molecules. Nat. Mach. Intell. 3, 1033–1039 (2021).

    Article Google Scholar

  18. Li, Y. & Yang, J. Structural and sequence similarity makes a significant impact on machine-learning-based scoring functions for protein–ligand interactions. J. Chem. Inf. Model. 57, 1007–1012 (2017).

    Article Google Scholar

  19. Chen, L. et al. Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening. PLoS ONE 14, e0220113 (2019).

    Article Google Scholar

  20. Chatterjee, A. et al. Improving the generalizability of protein-ligand binding predictions with AI-Bind. Nat. Commun. 14, 1989 (2023).

    Article Google Scholar

  21. Geirhos, R. et al. Shortcut learning in deep neural networks. Nat. Mach. Intell. 2, 665–673 (2020).

    Article Google Scholar

  22. Sastry, G. M., Dixon, S. L. & Sherman, W. Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring. J. Chem. Inf. Model. 51, 2455–2466 (2011).

    Article Google Scholar

  23. Volkov, M. et al. On the frustration to predict binding affinities from protein–ligand structures with deep neural networks. J. Med. Chem. 65, 7946–7958 (2022).

    Article Google Scholar

  24. Li, S. et al. MONN: a multi-objective neural network for predicting compound-protein interactions and affinities. Cell Syst. 10, 308–322 (2020).

    Article Google Scholar

  25. Cain, S., Risheh, A. & Forouzesh, N. Calculation of protein-ligand binding free energy using a physics-guided neural network. In Proc. IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (eds Chen, Y. et al.) 2487–2493 (IEEE, 2021); https://doi.org/10.1109/bibm52615.2021.9669867

  26. Stärk, H., Ganea, O., Pattanaik, L., Barzilay, R. & Jaakkola, T. Equibind: geometric deep learning for drug binding structure prediction. In Proc. 39th International Conference on Machine Learning (eds Chaudhuri, K. et al.) 20503–20521 (PMLR, 2022); https://doi.org/10.48550/arXiv.2202.05146

  27. Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).

    Article Google Scholar

  28. Atz, K., Grisoni, F. & Schneider, G. Geometric deep learning on molecular representations. Nat. Mach. Intell. 3, 1023–1032 (2021).

    Article Google Scholar

  29. Thurlemann, M., Boselt, L. & Riniker, S. Learning atomic multipoles: prediction of the electrostatic potential with equivariant graph neural networks. J. Chem. Theory Comput. 18, 1701–1710 (2022).

    Article Google Scholar

  30. Batool, M., Ahmad, B. & Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci. 20, 2783 (2019).

    Article Google Scholar

  31. Imrie, F., Bradley, A. R. & Deane, C. M. Generating property-matched decoy molecules using deep learning. Bioinformatics 37, 2134–2141 (2021).

    Article Google Scholar

  32. Mysinger, M. M., Carchia, M., Irwin, J. J. & Shoichet, B. K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 55, 6582–6594 (2012).

    Article Google Scholar

  33. Bauer, M. R., Ibrahim, T. M., Vogel, S. M. & Boeckler, F. M. Evaluation and optimization of virtual screening workflows with DEKOIS 2.0—a public library of challenging docking benchmark sets. J. Chem. Inf. Model. 53, 1447–1462 (2013).

    Article Google Scholar

  34. Wang, L. et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J. Am. Chem. Soc. 137, 2695–2703 (2015).

    Article Google Scholar

  35. Sieg, J., Flachsenberg, F. & Rarey, M. In need of bias control: evaluating chemical data for machine learning in structure-based virtual screening. J. Chem. Inf. Model. 59, 947–961 (2019).

    Article Google Scholar

  36. Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article Google Scholar

  37. Adeshina, Y. O., Deeds, E. J. & Karanicolas, J. Machine learning classification can reduce false positives in structure-based virtual screening. Proc. Natl Acad. Sci. USA 117, 18477–18488 (2020).

    Article Google Scholar

  38. Bouysset, C. & Fiorucci, S. ProLIF: a library to encode molecular interactions as fingerprints. J. Cheminform. 13, 72 (2021).

    Article Google Scholar

  39. Satorras, V. G., Hoogeboom, E. & Welling, M. E(n) equivariant graph neural networks. In Proc. 38th International Conference on Machine Learning (eds Meila, M. & Zhang, T.) 9323–9332 (PMLR, 2021); https://doi.org/10.48550/arXiv.2102.09844

  40. Yun, S., Jeong, M., Kim, R., Kang, J. & Kim, H. J. Graph transformer networks. In Advances in Neural Information Processing Systems 32 (eds Wallach, H. et al.) 11983–11993 (NeurIPS, 2019); https://doi.org/10.48550/arXiv.1911.06455

  41. Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).

    Article Google Scholar

  42. Mastropietro, A., Pasculli, G. & Bajorath, J. Learning characteristics of graph neural networks predicting protein–ligand affinities. Nat. Mach. Intell. 5, 1427–1436 (2023).

    Article Google Scholar

  43. Yu, Y., Lu, S., Gao, Z., Zheng, H. & Ke, G. Do deep learning models really outperform traditional approaches in molecular docking? Preprint at https://doi.org/10.48550/arXiv.2302.07134 (2023).

  44. Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221–234 (2013).

    Article Google Scholar

  45. Harder, E. et al. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput. 12, 281–296 (2016).

    Article Google Scholar

  46. Tuccinardi, T., Poli, G., Romboli, V., Giordano, A. & Martinelli, A. Extensive consensus docking evaluation for ligand pose prediction and virtual screening studies. J. Chem. Inf. Model. 54, 2980–2986 (2014).

    Article Google Scholar

  47. Westbrook, J. D. et al. The chemical component dictionary: complete descriptions of constituent molecules in experimentally determined 3D macromolecules in the Protein Data Bank. Bioinformatics 31, 1274–1278 (2015).

    Article Google Scholar

  48. UniProt, C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

    Article Google Scholar

  49. Wierbowski, S. D., Wingert, B. M., Zheng, J. & Camacho, C. J. Cross‐docking benchmark for automated pose and ranking prediction of ligand binding. Protein Sci. 29, 298–305 (2020).

    Article Google Scholar

  50. Shen, C. et al. The impact of cross-docked poses on performance of machine learning classifier for protein–ligand binding pose prediction. J. Cheminform. 13, 1–18 (2021).

    Article Google Scholar

  51. Zhang, X. et al. TocoDecoy: a new approach to design unbiased datasets for training and benchmarking machine-learning scoring functions. J. Med. Chem. 65, 7918–7932 (2022).

    Article Google Scholar

  52. Su, M., Feng, G., Liu, Z., Li, Y. & Wang, R. Tapping on the black box: how is the scoring power of a machine-learning scoring function dependent on the training set? J. Chem. Inf. Model. 60, 1122–1136 (2020).

    Article Google Scholar

  53. Scantlebury, J. et al. A small step toward generalizability: training a machine learning scoring function for structure-based virtual screening. J. Chem. Inf. Model. 63, 2960–2974 (2023).

    Article Google Scholar

  54. Ying, C. et al. Do transformers really perform bad for graph representation? In Advances in Neural Information Processing Systems 34 (eds Ranzato, M. et al.) 28877–28888 (NeurIPS, 2021); https://doi.org/10.48550/arXiv.2106.05234

  55. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 1263–1272 (PMLR, 2017); https://doi.org/10.5555/3305381.3305512

  56. Jiao, Q. et al. Edge-gated graph neural network for predicting protein-ligand binding affinities. In Proc. IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (eds Huang, Y. et al.) 334–339 (IEEE, 2021); https://doi.org/10.1109/bibm52615.2021.9669846

  57. Shang, C. et al. Edge attention-based multi-relational graph convolutional networks. Preprint at https://doi.org/10.48550/arXiv.1802.04944 (2018).

  58. Gong, L. & Cheng, Q. Exploiting edge features for graph neural networks. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (eds Michael S. B. et al.) 9203–9211 (IEEE, 2019); https://doi.org/10.1109/CVPR.2019.00943

  59. Dwivedi, V. P. & Bresson, X. A generalization of transformer networks to graphs. Preprint at https://doi.org/10.48550/arXiv.2012.09699 (2020).

  60. Bradley, A. P. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognit. 30, 1145–1159 (1997).

    Article Google Scholar

  61. Xue, Y., Tong, Y. & Neri, F. An ensemble of differential evolution and Adam for training feed-forward neural networks. Inf. Sci. 608, 453–471 (2022).

    Article Google Scholar

  62. Lu, W. et al. Tankbind: Trigonometry-aware neural networks for drug-protein binding structure prediction. In Advances in Neural Information Processing Systems 35 (eds Koyejo, S. et al.) 7236–7249 (NeurIPS, 2022); https://doi.org/10.1101/2022.06.06.495043

  63. Mendez, D. et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47, D930–D940 (2019).

    Article Google Scholar

  64. Liu, T., Lin, Y., Wen, X., Jorissen, R. N. & Gilson, M. K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35, D198–D201 (2007).

    Article Google Scholar

  65. Irwin, J. J. & Shoichet, B. K. ZINC—a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182 (2005).

    Article Google Scholar

  66. Truchon, J. F. & Bayly, C. I. Evaluating virtual screening methods: good and bad metrics for the ‘early recognition’ problem. J. Chem. Inf. Model. 47, 488–508 (2007).

    Article Google Scholar

  67. Cao, D., Chen, G., Jiang, J. & Zheng, M. PDBscreen with multiple data augmentation strategies suitable for training protein-ligand interaction prediction methods. Zenodo https://doi.org/10.5281/zenodo.8049380 (2023).

  68. Cao, D., Chen, G., Jiang, J., Yu, J. & Zheng, M. TEST dataset pocket for EquiScore. Zenodo https://doi.org/10.5281/zenodo.8047224 (2023).

  69. Cao, D. & Chen, G. Original data and supplementary information for ‘EquiScore is a generic protein–ligand interaction scoring method integrating physical prior knowledge with data-augmentation modeling’. Zenodo https://doi.org/10.5281/zenodo.10812637 (2023).

  70. Cao, D. Code for ‘EquiScore is a generic protein–ligand interaction scoring method integrating physical prior knowledge with data-augmentation modeling’. GitHub https://github.com/CAODH/EquiScore (2023).

  71. Cao, D. Code for ‘EquiScore is a generic protein–ligand interaction scoring method integrating physical prior knowledge with data-augmentation modeling’. Zenodo https://doi.org/10.5281/zenodo.10812534 (2023).

Download references

Generic protein–ligand interaction scoring by integrating physical prior knowledge and data augmentation modelling (2024)

References

Top Articles
Latest Posts
Article information

Author: Dr. Pierre Goyette

Last Updated:

Views: 6355

Rating: 5 / 5 (50 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Dr. Pierre Goyette

Birthday: 1998-01-29

Address: Apt. 611 3357 Yong Plain, West Audra, IL 70053

Phone: +5819954278378

Job: Construction Director

Hobby: Embroidery, Creative writing, Shopping, Driving, Stand-up comedy, Coffee roasting, Scrapbooking

Introduction: My name is Dr. Pierre Goyette, I am a enchanting, powerful, jolly, rich, graceful, colorful, zany person who loves writing and wants to share my knowledge and understanding with you.